If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-6x-54=0
a = 10; b = -6; c = -54;
Δ = b2-4ac
Δ = -62-4·10·(-54)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{61}}{2*10}=\frac{6-6\sqrt{61}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{61}}{2*10}=\frac{6+6\sqrt{61}}{20} $
| 6/7x-7/3=-3/2 | | -5y=-42 | | 1-2(8-x)=10 | | 4g+9=45 | | (4x+20)+44=180 | | 0.19y+0.04(y+7000)=2350 | | -9m+6=15 | | 7b-8=-78 | | 3b-5=34 | | 5/2x+18=28 | | 2=d=+1/4 | | 5(x+8)=-5(2x-5)+3x | | 1.4x+2.6=1.9x+2.1 | | 3x+1=2-(2-2x) | | 3(4x-1)+x=5x+2(-2+4x) | | -104=-8p | | 3)11=-3p+5+6p | | 1.2x=2x+5.8 | | 2u+1=7(u-7) | | 2u+1=7u-7) | | 12+6a-7a=-3a-2 | | 2x-11=6x+13 | | 11q−7q−17=–2q+7 | | 94=10+7b | | 1.2x=2x+10 | | x-32=33-4x | | 18x-4=24 | | 7153−=−x | | 4x+6x=356-26 | | x-32=-51x= | | 6-9x=3x | | 1+2p+5p=22 |